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Abstract. A semiconductor nanostructure represented by the cylindrical electrostaticδ-
potential subjected to magnetic fields is considered theoretically. The possibility of particle
penetration into the region outside the ring for a finite opacity leads to modification of the
energy spectrum and the associated azimuthal currents compared to the results for the quantum
ring. In particular, when the Aharonov–Bohm whisker is introduced at the origin the currents
do not tend to zero in the limit of vanishing magnetic flux. This is attributed to the change of
the topology of the structure after introducing the non-zero Aharonov–Bohm flux. This feature
diminishes when more realistic distributions of the magnetic field are considered. For uniform
magnetic fields anticrossings of the energy levels are observed as a function of the magnetic
index and their role in determining the quantum currents is investigated for a wide range of the
potential strength. Similarities and differences between the rectangular and cylindrical geometry
are discussed.

The concept of theδ-potential provides the simplest and most convenient mathematical
description of physical phenomena. For instance, it finds a wide application in miscellaneous
theoretical models [1]. Recently, the problem of a one-dimensionalδ-potential in an external
magnetic field was considered theoretically in an attempt to model a simple semiconductor
microstructure [2]. A comparison with finite rectangular barriers [3, 4] or a well [5]
reveals that theδ-potential model studied correctly captures the main characteristics of more
realistic structures. In this work the energy spectrum and the associated azimuthal currents
are investigated for a model quantum structure represented by a cylindricalδ-potential of
strength� subjected to various configurations of applied magnetic fields. The situations
considered are:

(1) Aharonov–Bohm flux [6, 7] threading at the origin;
(2) a uniform magnetic field in the interior of the ring directed along the symmetric axis

and zero outside;
(3) a uniform axial magnetic field over all of the space.

The motivation for the present investigation is that similar structures with cylindrical
symmetry have attracted a lot of theoretical [8, 13] and experimental [14, 16] attention
in connection with the problem of persistent currents [17]. The most obvious difference
between previous studies and the model proposed here is the fact that the former studies
consider electronsrigidly bounded on the ring while for our model with� < 0 there is a non-
zero probability of particle penetration into the region outside the ring. Therefore, the radial
part of the wavefunction becomes an important factor in determination of the eigenenergies
and eigenstates. In the limit of� → −∞ we recover the previous results for rigidly

0953-8984/96/132197+12$19.50c© 1996 IOP Publishing Ltd 2197



2198 O Olendski and C S Kim

bounded electrons. However, in the intermediate regime predictions of the two models are
different. Throughout our calculations we assume a ballistic regime of electron motion, i.e.,
the mean free path of an electron is assumed to be much larger than the perimeter of the
ring Lp = 2πρp, with ρp being the radius of the ring. Also, since recently it was shown
theoretically that the effect of electron–electron interaction on persistent currents may be
neglected [18, 19], we adopt an independent-electron picture with a single effective mass.

Let us start by considering the configuration of the cylindricalδ-potential of radiusρp,
circumferenceLp = 2πρp, and strength(h̄2/m∗

e )�:

V (ρ) = h̄2

m∗
e

� δ
(
ρ − ρp

)
(1)

wherem∗
e is the effective mass of the electron. Positive opacity of the potential� > 0

corresponds to the repulsive potential and negative opacity (� < 0) to the attractive one.
We introduce also the Aharonov–Bohm flux8 pierced along the axis of symmetry of the
ring potential. The relevant single-particle equation is written in plane polar coordinates
r = (ρ, ϕ) as(c ≡ 1){

1

2m∗
e

(p + eA)2 + V (ρ)

}
9(ρ, ϕ) = E9(ρ, ϕ) (2)

wheree is the absolute charge of an electron andA is the vector potential. In the symmetric
gauge adopted here only the tangential component of the vector potential is not zero:

Aϕ = 8

2πρ
.

Then, one can separate out variables by making use of theansatz

9(ρ, ϕ) = 1√
2π

R(ρ) exp(imϕ) (3)

wherem is the magnetic quantum number and the radial wavefunction is subjected to

d2

dρ2
R + 1

ρ

d

dρ
R −

(
2m∗

e |E|
h̄2 + (m + φ)2

ρ2

)
R − 2� δ

(
ρ − ρp

)
R = 0. (4)

Since bound states can exist only forE < 0, we have explicitly incorporated this into
equation (4) where the absolute value of energy is present. Also, in equation (4)φ is
defined to be

φ = 8

80
(5)

with 80 = h/e being a flux quantum. Since all properties of the system are periodic in
8 with a period80 and possess definite symmetry with respect toφ = 0, only the case
0 6 φ 6 0.5 is considered below.

Solutions to equation (4) are

R(ρ) = A−I|m+φ|

(
1

h̄

√
2m∗

e |E|ρ
)

ρ < ρp (6)

R(ρ) = A+K|m+φ|

(
1

h̄

√
2m∗

e |E|ρ
)

ρ > ρp (7)

whereIν (x) andKν (x) are the modified Bessel functions [20] andA± are the normalization
constants. Using the same arguments as in the case of the one-dimensionalδ-potential [21],
one can readily derive matching conditions for the cylindricalδ-potential:

R
(
ρp − 0

) = R
(
ρp + 0

)
(8)
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d

dρ
R

(
ρp + 0

) − d

dρ
R

(
ρp − 0

) = 2�R
(
ρp

)
. (9)

Applying these to the configurations discussed and after some algebra, one can obtain∣∣�∗∣∣ I|m+φ|
(∣∣E∗∣∣1/2

)
K|m+φ|

(∣∣E∗∣∣1/2
)

= 1 (10)

which determines the energy eigenvalues. In the above the following normalized quantities
have been introduced:

�∗ = 2�ρp and E∗ = E
/(

h̄2

2m∗
eρ

2
p

)
(11)

and also use has been made of the fact that bound states can exist only for negative�∗.

Figure 1. The energy spectrumE∗ as a function of the potential strength�∗ for φ = 0.2;
numbers near the curves denote the quantum numberm.

This result deserves some attention. First, equation (10) gives rise to a finite number
of bound states for a finite negative�∗ unlike the one-dimensionalδ-potential because of
the additional degree of freedom along the azimuthal direction. Also, it follows from the
asymptotic properties of the modified Bessel functions for small argument [20] that there
appears a threshold value of|�∗| that triggers a new bound state: the energy level with a
particular quantum numberm can exist only when|�∗| is bigger than 2|m+φ|. In particular,
for φ = 0 at least one bound level exists regardless of|�∗|. However, if the well is shallow,
introducing an Aharonov–Bohm whisker can convert this level into an unbound state. In
the opposite limit of very deep wells, the normalized energies depend on�∗ quadratically:∣∣E∗∣∣ ≈ 1

4

∣∣�∗∣∣2
. (12)

These features of the energy spectrum are shown in figure 1 whereE∗ is plotted as a
function of �∗ for severalm with φ = 0.2. Here, it should be noticed that the radial
quantum number has been suppressed due to the delta potential, and accordingly only the
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magnetic quantum number appears. It is seen that the level withm = 0 always has the
least energy as compared to other levels. This level exists for all values of�∗ 6 −2|φ|.
For very shallow wells, i.e. when�∗ ' −2|φ|, it is located near the top of theδ-potential:
|E∗| ≈ 0. Figure 1 clearly manifests that there exist the aforementioned threshold values of
|�∗| = 2|m + φ|. In the opposite limit of�∗ → −∞ we come to the system of electrons
rigidly bounded on the quantum ring studied in [8].

Figure 2. The valueβ as a function of�∗ for several levels; numbers near the curves denote
the quantum numberm.

The correspondence between our proposed model and the structure studied in [8]
becomes more evident if one computes the associated currents. In the present investigation
only the azimuthal component is relevant and it can be obtained by integrating the following
current density over the radial axis [22]:

jϕ(ρ) = − 1

2π

eh̄

m∗
e

[
m

ρ
+ e

h̄
Aϕ(ρ)

]
R2(ρ). (13)

The currentJ carried by the state with a definite quantum numberm is given as

J = − 2πeh̄

m∗
eL

2
p

(m + φ) β (14)

where a normalization condition has been used:∫ ∞

0
R2(ρ)ρ dρ = 1.

Comparing this with the case of electrons rigidly bounded on the ring, equation (2.2) in [8],
one sees that the only difference is the appearance of the term

β = ∣∣E∗∣∣(∫ |E∗|1/2

0
I 2
|m+φ|(ρ)

dρ

ρ
+ γ 2

∫ ∞

|E∗|1/2
K2

|m+φ|(ρ)
dρ

ρ

)
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×
(∫ |E∗|1/2

0
I 2
|m+φ|(ρ)ρ dρ + γ 2

∫ ∞

|E∗|1/2
K2

|m+φ|(ρ)ρ dρ

)−1

(15)

where

γ = I|m+φ|
(|E∗|1/2)

K|m+φ|
(|E∗|1/2

) . (16)

This term appears because we take into account the possibility of particle penetration into
the region outside the ring. The quantityβ is shown in figure 2 as a function of�∗ for
φ = 0.2. It is shown that for increasing|�∗| the results rapidly approach those for an
infinite δ-potential:β → 1. It is also manifested that for levels with|m| > 3 the value ofβ
is very close to unity even at the threshold values of�∗. Since the largest deviations from
the results for the infinite well occur at the level withm = 0, we will concentrate on it in
the following. It is shown that as�∗ → −2 |φ| the current form = 0 tends to zero. The
value ofβ increases first while the depth of the well gets bigger, and after passing through
a maximum it decreases gradually to unity.

Figure 3. The currentJ ∗ carried by the levelm = 0 versus the normalized Aharonov–Bohm
flux φ for several�∗; numbers near the curves denote the value of|�∗|.

Next, theJ–φ characteristic curves for the level ofm = 0 are plotted in figure 3 for
varying depth of the ring potential, where the normalized currentJ ∗ is used:

J ∗ = J
/(

2πeh̄

m∗
eL

2
p

)
. (17)

This shows that at small|�∗| the dependence of the current on the flux is not linear. The
prominent feature of theJ–φ characteristic curves that we obtained is that the current is
not a continuous function of the flux atφ = 0; in fact, it is seen that current, which is zero
identically atφ = 0 (see equation (14)), has a non-vanishing value at any infinitesimally
small φ. This is due to the fact that introduction of the Aharonov–Bohm whisker at the
origin changes the topology of the system considered. As a result, the wavefunction for
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m = 0, which is non-zero atρ = 0 without the Aharonov–Bohm flux, should vanish
at the origin whenφ 6= 0. This also explains why the largest deviation takes place for
the state withm = 0 in figure 2 since even in the absence of the flux the wavefunctions
with non-zerom vanish atρ = 0. Also, it is observed that the discontinuous jump of the
currents becomes smaller on increase of|�∗|. This is because for the deeper wells the value
of the wavefunction at the origin is smaller in the absence of the magnetic whisker, and
accordingly introduction of the central flux does not alter the behaviour of the wavefunction
at the origin significantly. And, for|�∗| = 10 we almost recover the continuous and linear
dependence of theJ–φ characteristic of the infiniteδ-potential.

Figure 4. As figure 3, but for the structure with magnetic fields uniform inside the ring but zero
outside; numbers near the curves denote the value of|�∗|.

In order to eliminate the above-mentioned discontinuity in theJ–φ characteristic, one
must deal with more realistic distributions of the magnetic field. To demonstrate this we
have performed calculations for the ring structure with a magnetic fieldB = (0, 0, B) which
is applied uniformly inside the region of the ring and zero outside, where the ring lies in
the xy-plane:

B(ρ) =
{

B ρ 6 ρp

0 ρ > ρp.
(18)

The Aharonov–Bohm whisker has been removed from the centre in the present structure.
Non-uniform configurations of the magnetic field have become of increasing theoretical
interest [23, 24] due to the progress in the growth technology [25–27]. For the magnetic
field given by equation (18) the most convenient choice of the vector potential is as follows:

Aϕ(ρ) =


1

2
Bρ ρ 6 ρp

1

2

Bρ2
p

ρ
ρ > ρp.

(19)
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By varying the magnetic fieldB one changes the total magnetic flux8 = πBρ2
p. Outside

the ring the electron wavefunction is still described by equation (7). On the other hand,
inside the ring the solution of the Schrödinger equation reads now

R(ρ) = A− exp

(
− 1

4

ρ2

r2
B

)(
1

2

ρ2

r2
B

)|m|/2

×M

(
1 + m + |m|

2
− E

h̄ωB

, |m| + 1,
1

2

ρ2

r2
B

)
ρ < ρp. (20)

In the aboveM(a, b, x) is the confluent hypergeometric function [20],ωB = eB/m∗
e is the

cyclotron frequency, andrB = √
h̄/eB is the magnetic radius. Applying magnetic fields in

the regionρ 6 ρp does not lift the suppression of radial quantum number and thus only the
magnetic quantum number is present. The form of the wavefunction suggests that it remains
finite at ρ = 0 for m = 0 with non-zero flux. Consequently, the current is a continuous
function of the flux atφ = 0 as is clearly seen in figure 4 where theJ–φ characteristics
are plotted for the present configuration form = 0. It should be noticed that in the present
configuration, contrary to the case of Aharonov–Bohm flux, the magnitude of the current
is always smaller as compared to the result for infinite opacity. Increasing|�∗| causes the
slope of theJ–φ characteristic to increase and eventually to approach the previously known
results in the limit of�∗ → −∞ [8].

As the third configuration we shall discuss the problem of aδ-potential in uniform
magnetic fields. In this case the radial part of the wavefunction forρ < ρp is described by
equation (20), and outside the ring it is given as

R(ρ) = A+ exp

(
− 1

4

ρ2

r2
B

)(
1

2

ρ2

r2
B

)|m|/2

×U

(
1 + m + |m|

2
− E

h̄ωB

, |m| + 1,
1

2

ρ2

r2
B

)
ρ > ρp (21)

where the special functionU(a, b, x) is an another solution to Kummer’s equation, which
is linearly independent ofM(a, b, x) [20]. The matching procedure using equations (8) and
(9) produces the transcendental equation for determination of the energy spectrum:

M

(
1 + m + |m|

2
− E∗, |m| + 1,

1

2
r2
p

)
U

(
1 + m + |m|

2
− E∗, |m| + 1,

1

2
r2
p

)
= − 2|m|+1

�∗
(|m|)! exp

(
1
2r2

p

)
r

2|m|
p 0 ((1 + m + |m|)/2 − E∗)

(22)

where0(x) is the Gamma function and the variables are normalized according to

E∗ = E

h̄ωB

rp = ρp

rB

. (23)

In this case the energy eigenvalues are specified by two quantum numbers, the radial
quantum numbern and magnetic quantum numberm, unlike in the previous two situations.

A few asymptotic cases can be deduced from equation (22). First, at�∗ = 0 one gets
the usual Landau levels of the form

E∗ = n + 1

2
(|m| + m + 1) . (24)
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In the case of vanishing magnetic field, using the properties of the confluent hypergeometric
functions [20], one recovers equation (10) withφ = 0. Also, the limit |�∗| → ∞ in
equation (22) leads to the condition

M

(
1 + m + |m|

2
− E∗, |m| + 1,

1

2
r2
p

)
U

(
1 + m + |m|

2
− E∗, |m| + 1,

1

2
r2
p

)
= 0. (25)

When the delta potential is repulsive, equation (25) results in either an electron confined in
a quantum disk of radiusρp (when the functionM is equal to zero) or an electron located
outside the disk (when the functionU(a, b, x) is zero). In particular, the former situation
was treated in detail in [11, 28]. On the other hand, when the delta potential is attractive,
equation (25) corresponds to the problem of the quantum ring that was considered in [8].

Figure 5. Energy dispersion relations for the structure with uniform magnetic fields in terms of
magnetic indexm for rp = 10 and (a)�∗ = 1, (b) �∗ = 10, (c)�∗ = 100, and (d)�∗ = 1000;
numbers near the curves denote the quantum numbern.

The outcome of calculations of equation (22) for general softδ-potentials are presented
here. The energy spectraE∗ for several positive and negative�∗ are shown in terms
of the magnetic indexm for several radial quantum numbersn in figure 5 and figure 6
respectively. They manifest a similar behaviour to the corresponding case of the one-
dimensionalδ-potential on replacing the centre of magnetic oscillationsy0 by the magnetic
indexm [2]. Introducing the electrostatic potential into the uniform magnetic field induces a
lift of the degeneracy of the Landau levels. At small|�∗| it is seen that the deviation of the
energies from the Landau levels is small on varying the magnetic indexm. In this case it is
difficult to speak of any interaction between levels with different principal quantum numbers
n. Increasing|�∗| disturbs magnetic states more strongly and consequently the levels with
adjacentn get closer to each other at some values ofm. Going from parts (a) to (d) in
figures 5 and 6, one clearly sees how the anticrossings and repulsions of levels are built
up in the energy spectrum on increase of|�∗|. It is worthwhile to note that for a positive
(negative)�∗ every nth level (n = 0, 1, 2, . . .) has n + 1 maxima (minima) in figure 5
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Figure 6. As figure 5, but for attractive potentials: (a)�∗ = −10, (b)�∗ = −50, (c)�∗ = −90,
and (d)�∗ = −150.

(figure 6) respectively. Also, the anticrossing and level repulsion appear clearly for the
states aroundm = −50 in the energy dispersion. This interesting feature can be explained
as follows. For the present geometry in the absence of the potential the dependence of
the radial wavefunction on the distance takes the form∼Rn(ρ − ρm) where the centre of
the wavefunction isρm = √

2 |m|rB andRn is thenth eigenfunction of a one-dimensional
harmonic oscillator [29]. And, form = −50 it is estimated that the radiusρm = 10rB .
Also, we have chosen the location of the delta potential to be atρp = 10rB for the present
calculation. Thus, those states nearm = −50 are mostly influenced by the presence of
the delta potential. The anticrossings in the energy spectrum become sharper for bigger
|�∗|. In figure 5 it is seen that levels which satisfy|m + 50| � 0 are almost unaffected by
the δ-potential. In addition, we have seen that all states with positive magnetic quantum
numbers are also unaffected by theδ-potential. However, as is seen from figure 6 for a large
negative�∗, levels withn = 0 are pushed downward aroundm = −50, and consequently
interaction with the states withn 6= 0 takes place at larger negativem. Also, differently
from the case for the repulsive interaction, energies of the levels with positivem for n = 0
at strong enough|�∗| lose their unperturbed values, too. Increasing|�∗| further sweeps
away energies of states withn = 0 for all m from values of the unperturbed magnetic field
in figure 6(d). In the limit�∗ → −∞ it is seen that the energy eigenvalues of the states
with n = 0 behave for allm as

E∗ ∼ −a + b

(
m + 1

2
r2
p

)2

(26)

wherea andb are positive constants, which represents a quantum ring problem with rigidly
bounded electrons subjected to a magnetic fluxφ = 1

2r2
p [8]. Also, the energies of the

states withn > 1 tend to usual Landau levels, equation (24), replacingn by n − 1 for large
negative and all positivem.
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Figure 7. CurrentsJ ∗ as a function of the magnetic indexm for states withn = 0; the values
of �∗ in each part of the figure correspond to those from figure 5.

Figure 8. As figure 7; the values of�∗ in each part of the figure correspond to those from
figure 6.

In order to provide an insight into the transport problem the associated azimuthal currents
with those states withn = 0 in figures 5 and 6 are depicted in figures 7 and 8 respectively,
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where use has been made of the normalization

J ∗ = J
/ (eωB

2π

)
. (27)

For the uniform magnetic field without any electrostatic potential, the current carried by the
energy level with quantum numbersn andm is specified to be

J ∗ =


0 m < 0

−1

2
m = 0

−1 m > 0

(28)

which is independent of the radial quantum numbern. The δ-potential introduced into the
uniform magnetic fields leads to deviations of the currents from equation (28). The currents
shown in figures 7 and 8 also follow from behaviour of the energy derivative with respect
to the magnetic quantum number [29]

J ∗ = − e

h

∂E

∂m
. (29)

For example, for a small positive opacity, the energy does not change appreciably with
m (figure 5(a)) and the resulting currents are also small as would be expected from
equation (29) (figure 7(a)). Increasing positive�∗ results in larger deviations of the energy
and consequently current compared to the uniform field results. As we mentioned before,
states withm = −50 have a special meaning for the parameters chosen. For instance,
the anticrossing between states withn = 0 and states withn = 1 occurs at this level of
m = −50. And, the energy spectrum is symmetric about this level and its slope becomes
discontinuous at large�∗. Consequently, an abrupt change is seen in the current, of which
the behaviour becomes more evident for stronger�∗. Physically, levels with|m| < 50 for
negativem correspond to the edge states located inside the ring potential and levels with
m < −50 are the edge states outside the ring. Because of this, they carry opposite currents
as is clearly seen from figure 7.

Currents carried by the states withn = 0 are plotted in figure 8 for negative opacity.
Again, it is seen that a larger value of opacity causes more deviation of current from the
values of equation (28). In this case the current vanishes identically for the state with
m = −50, which can be understood as a consequence of equation (29). As in the case of
a repulsive potential, the drastic changes ofJ ∗ occur at the anticrossing points. Comparing
figures 7 and 8, one notices that the sign of the current for�∗ < 0 is opposite compared
to that for positive potential. It is worthwhile to note also that for strong enough negative
�∗, i.e. when the energy depends onm quadratically (see equation (26)), the corresponding
currentJ ∗ is a linear function of the magnetic quantum number.

We have also seen that the currents carried by the states withn > 0 behave similarly:
the anticrossing with adjacent levels gives rise to an interesting change in the current. Thus,
it is confirmed that the anticrossings in the energy spectrum are important in determining
transport properties of quantum systems in magnetic fields.

In conclusion, we have investigated the electronic and transport properties of
a semiconductor microstructure modelled by a cylindricalδ-potential for various
configurations of applied magnetic fields. It has been manifested that the results depend
crucially on the distribution of magnetic fields and strength of the potential. Introduction of
the electrostatic delta potential in uniform magnetic fields gives rise to the anticrossings and
repulsions of the levels in the single-particle energy spectrum, which in turn results in the
drastic change in the associated currents. Under limiting situations the previously known
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results for the quantum ring and quantum disk have been recovered. The net equilibrium
persistent current would be determined by summing all contributions from the energy levels
weighted by the thermal distribution function in the usual manner. In the present work
we have restricted our interest to the detailed analysis of the quantum currents carried by
single-particle states.

Finally, we want to point out that the possibility of electron leakage outside the ring
leads to the coupling between states of coaxial cylinders with different radii, which may give
rise to some interesting new phenomena. By increasing the number of potentials one may
devise a cylindrical superlattice. However, this is a subject for another special consideration
in future work.
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